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The Runge-Kutta smoother is applied to suppress nonlinear numerical instabilities in the
leapfrog scheme for time integration of the Korteweg~de Vries equation. The accuracy of
intcgration is compared with that by the use of the second order smoother. The Runge-Kutia
smoother enables us to make long-time integration of the Korteweg~de Vries equation for
large ampli[udes. £ 1991 Academic Press. Inc.

1. INTRODUCTION

The leapfrog scheme has extensively been used for time integration of nonlinear
partial differential equations of hyperbolic type. The scheme has the merit of being
simple and free from dissipation errors. However, when we use the leapfrog scheme
fo integrate equations including no dissipative term, such as the nonlincar conves-
tive equation or the Korteweg-de Vries (K-dV) equation, the scheme often suifers
from some numerical instabilities [1-47.

In the previous paper [4]. we studied the nonlinear numerical instability in ths
leapfrog scheme applied to the K-dV equation. It was shown that the instability
comes from parametric excitation of computational modes of wave. In order to
carry out long-time integration of the K-dV equation, the previous paper proposed
the Runge—Kutta smoother to suppress the instability.

This paper shows experimentally that the Runge-Kutta smoother combined with
the leapfrog scheme by Zabusky and Kruskal [5] enables us to make long-time
integration of the K-dV equation for large amplitudes,
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2. OBSERVATION OF NUMERICAL INSTABILITY

We consider the K-dV equation as in [4]:

6_u+ 6u+ 6311_0 {
o e TR T M
where u is constant. We solve Eq. (1) under the periodic boundary condition
u(x, t)=u(x+2,1) (2)
and the initial condition
u(x, 0) = A cos(nx), 3)

where A is the amplitude. We adopt the leapfrog scheme by Zabusky and Kruskal
[51]:
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where u] = u(x=j Ax, t =n At), Ax is the spatial increment, and 47 is the temporal
increment. The periodic boundary condition (2) becomes

Ui =7, o)
where 2J Ax =2, and the initial condition (3) becomes

uj = A cos(nj Ax).
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FiG. 1.

Invariants [C,| as functions of time step # or time 7 for A =0.5, 1.0, 2.5, and 5.0; 1 = 0.0227%;
Ax=2/400; &= Ar=2.5x10"* in Eq. (4).
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TABLE I

Blowup and Near-Recurrence Times

Amplitude 4 5.0 2.5 1.0 G.5
Blowup time (nz,) 1.90 5.88 253 75.4
Near-recurrence time (nz,) 138 19.3 30.2 425

We make the numerical integrations based on scheme (4) fixing p=0022%
Ax=12/400, and 7 4r=25x10"* for 4=05, 1.0, 2.5, and 50. The temporal
increment given above satisfies the linear stability condition {(9) given later. The
accuracy of integrations is checked by observing the conservation law of the K-dV
equation (1)

.2
CZEI u(x, 1y* dx — 4°
Jo
2J—1
=Ax ) (u;’)zﬂAZZO. {5}

/=0

All of the computations are made by using numbers of 16 figures {double
precision).

Figure 1 gives the values of |C,| as functions of time siep # or time 7. We see from
the figure that after some time step |C,| exponentially grows without bound. The
growth rate becomes larger with the amplitude 4. We define the blowup time ¢, at
which |C,| exceeds 42 The numerical solution obtained by the leapfrog scheme (4)
for t > 1, has no meaning. Table I gives the blowup time r, and the near-recurrence
time 7, whose definition will be given later.

Figure 2 gives the magnified curve of €, in Fig 1 for 4 = 1.0 and
1=59,900 ~ 60,100. The value of C, changes its sign at each time step.
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FiG. 2. Saw-toothed oscillation of C, corresponding to Fig. 1 for 4 =1.0, and »n= 55,900 ~ 60,70C.
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3. PaysICAL AND COMPUTATIONAL MODES

In order to explain the saw-toothed oscillation of C,, let us start from the linear
stability analysis of scheme (4). For rough estimation of the linear stability we
replace (¢}, ; +u] +u; ,)/3 in the second term of the right-hand side of Eq. (4) by
a constant ¢ and expand ] in terms of the discrete Fourier coefficients Uy :

= inkj
uy= 3% Upexp (7) (6)
k= —J /
Thus we obtain from the linear version of scheme (4)
UZ_“—2idt[0)k——;—sin(nkAx):| Up—Ui—'=0, (7)
X
where
2u
W =3 sin(nk Ax)[1 — cos(nk Ax)].
(4x)

The solution of Eq. (7) has the form of U} xexp(inf,), where
sin 8, = At [wk——c—sin(n:k Ax)]. (8)
Ax

The condition that §, is real or [sin ;| < 1 leads to the linear stability condition for
scheme (4). The condition [sin 8,] <1 is satisfied if
J<

At 4p
ye G +(Ax)2]<1. )

Ar l:maxlwkl + max

< sin(rk Ax)
Ax

or

Inequality (9) is the severe stability condition for Az When inequality (9) is
satisfied, Eq. (8) has two solutions of 8,. If we write one of them as 6, the other
is  — 08,. Then the solution of Eq. (7) is written as

Ui=V,.exp(inf,)+ W, explin(r—6,)]
=V, exp (in0,) + (—1)" W exp(—inf,), (10)

where the coefficients V', and W, are constants independent of n. By substituting
Eq. (10) into Eq. (6), we can express u; as

W=l (— 1) W, (11)
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)1 J—1 n 3 :
(1 1] (2)
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Vi=T, explinf,), W= W, expl—inf,).

where

We call v} as physical modes and (—1)"w] as computational modes. When 4
approaches zero, physical modes converge to the physical solution and computa-
tional modes vanish. Note that computational modes change their signs at cach
time step #.

In view of the linear solution (11), we may decompose also solutions u of the
nonlinear equation (4) into the physical modes ¢} and the computational modes
(=1)y'w? as in Eq.(11). The saw-toothed oscillation in Fig.2 comes from the
computational modes (—1)"w7 in Eq. (11).

4, RUNGE-KUTTA SMOOTHER

The simplest way [6] to exclude the computational modes is to evalutate
WP+ 2u” + w7 " from Eq. (11) as

uilt ! + 2u) +uj’.'*1 = v;f“ +2v" + v;”l — (- 1‘;”(»";"*1—2“'1’7 +wih

and approximate of "'+ 207+ v ~4v} and wit'— 2w+ wi =0 Then we
obtain

,,_._
™2

W __ 1 N — 1y, I
vl =(u;"" +2ul +u; )4 {
Replacing #» by n— 1 in the above equation, we obtain

n—-1 __ n n— i _,',,_7_‘/
v =l 2u T ) T4

We can restart the leapfrog integration based on Eq. {4) using v} and v? =" in place
of u} and «) ' at some time step. This replacement operation, however, viclates the
conversation law of C,. We call the smoother {12} as the second-order smoother.
A more accurate way to exclude the computational modes is to apply the

foliowing Runge-Kutta smoother. By replacing »# in Eq. (11} by #n — 1, we obtain
Wi =t (=1 113

In order to obtain v, w), v}”*‘, and wj’."‘ from u} and u]’.’_l, we need iwo mor
equations as well as Eqs. (11) and (13). For this purpose, we use the differential
equation recovered from Eq. (4):

du; i ( ut " \

L= -y i, W,y —~u;

61‘ 6Ax j+1 g J 1{J+i j—1

u
2(4x)?

(w2 — 20, +2u, | —u; ,), (14)
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where u,(¢) are regarded as functions of continuous time r. We integrate Eq. (14)
using the Runge-Kutta scheme to obtain u;(f =n At) from u}”" which are the leap-
frog solutions of Eq. (4). The step-size used in the Runge-Kutta scheme is 4¢, same
as in the leapfrog scheme. Since the Runge-Kutta scheme is free from the saw-
toothed oscillation, all of uj'.‘"‘ in Eq. (13) are advanced in time with no such
oscillations as the computational modes. Therefore u;(t=n Ar) integrated from

n—1

u;~ ' may be expressed as
u(t=ndt)y=v;—(=1)"w}. (15)
We have ignored the errors incurred by the use of the Runge—Kutta scheme instead

of the leapfrog scheme. The validity of Eq. (15) will be ascertained experimentally.
Then from Egs. (11) and (15), we obtain

vi = [uf +u(t=n41)1/2,
(=1)y'wi=[u]~u(t=nA41)]/2.
Thus we can decompose u} into the physical modes v} and the computational
modes (—1)"w}. In a quite similar manner, we make time-reversing Runge-Kutta

integration of Eq.(14) to obtain u,(t=(n—1)4¢t) from u;. As in the case of
Eq. (15), u;(t = (n— 1) 4t) obtained thus may be expressed as

wi(t=(n—1)dr)=0] "'+ (—1)"w;~ L
Equation (13) and the last equation give
v T =uf T u (= (n— 1) 41)]/2,
(=1)"""wi =[] —u(t=(n—1) 40)]/2.

The schematic graph for the Runge-Kutta smoother is given in Fig. 3.
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FIG. 3. Schematic graph for the Runge-Kutta smoother: u], uj”“, leapfrog solutions; u;(¢=n A1),
u,(t=(n—1) 4r), Runge-Kutta solutions.
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5. EFFECTS OF SMOOTHING

We substitute Eq. (11) into the right-hand side of Eqg. (5) to obtain

CZ = Clp + C2C7
where
2J—1
C,,=d4x Yy (7Y —4°
Jj=0

2J-1
2 _A\ 2 [2 _1 nwn 4 (er_z)l].

j=

The C,, denotes the error of physical modes and C,. comes from compurational
modes. Since in earlier time stage [w}| <|v7], the last equation becomes

27—-1

C%: n z Mn H

Thus C,, changes its sign at each time step n. Figure 4 gives |C,,| and (]
obtained thus for 4 =1.0. The C,, in Fig. 4 changes its sign at each time step as
shown in Fig. 2. Note that the saw-toothed oscillation of C,. does not appear in
1C,.|. Also is noted in Fig. | that the saw-toothed oscillation of C, does not appear
in |C,| when |C,,| > |C,,]. The saw-toothed oscillation of |C,| appears only when
|Cad X 1Co. |

Now we apply the smoother to scheme (4); that is to say. we replace «} and Wt
by the physical modes v} and v"‘l respectively, at some time step. Figures 5 and
6 give C;, and C,, for A =10 when the second-order smoother is applied at the
time step n = 60,000. We see from the figures that the second-order smoother can-
not exclude the computational modes completely, and the remaining computational
modes grow rapidly to blow up the integration. Figures 7 and 8 give C,, and C,,
for 4 =10 when the Runge-Kutta smoother is applied a: the time step n = 60,000
The Runge-Kutta smoother can exclude the computational modes almost com-
pletely and enables us to make the long-time leapfrog integration if we apply the
Runge-Kutta smoother periodically.

We also applied the second-order and Runge-Kutta smoothers to integrations
for 4=0.5, 2.5, and 5.0 and found that the second-order smoother cannot exclude
the computational modes completely, while the Runge~Kutta smoother can exciude
them almost completely. This fact may assure the validity of Eqgs. (11) and {15}
even for 4=2.5 and 5.0.

Figure 9 gives |C,,| at the near-recurrence time ¢, as a function of the smoothing
period. The Runge—Kutta smoother is applied at the end of each smoothing period.
We evaluate the fundamental Fourier coefficient U7 in Eg. (6) from the leapfrog
solutions u]. The near-recurrence time f,, which has been given in Table I, is the
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FiG. 4. |C,,] and |C,| as functions of time step n for 4= 1.0 in Fig. 1. Note that C,, is not the
physical part of the constant but the error of the constant, C,=C,,+ C,..
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FiG. 5. Time developments of |C,,] and |C, | for 4 = 1.0 when the second-order smoother is applied
at the time step » = 60,000.
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Fi1c. 6. Magnified curves of C,, and C;, at the smoothing time step # = 60,000 in Fig. 5.
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Fic. 7. Time developments of |C,,| and |C, | for A =10 when the Runge-Kutta smoother s
applied at the time step # = 60,000.
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Fic. 8. Magnified curves of C;, and C,, at the smoothing time step » = 60,000 in Fig. 7.
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FIiG. 9. {C,,| at the near-recurrence time !, as a function of smoothing period for 4 =05, 1.0. 2.5,
and 5.0. The smoothing period is normalized by the near-recurrence time 7,.
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TABLE II
Values of |C{[, |C,|, and |C,| at Near-Recurrence Time 7, by Using Runge—Kutta
Smoother
Amplitude A4 5.0 25 1.0 0.5
smoothing
period,t, 0.0453 0.0648 0.331 0.471
(step n) (2,500) (5,000) (40,000) (80,000)
1Cy 1.55x 10712 1.98 x 1012 1.32x10"12 9.32x107H
|C,) 3.60 x 10~ 7.06 x107¢ 405x%10 7% 7.62x 1010
1 C4] 3.27x 1072 7.12x 1073 541 x 1073 325x10°¢

time when |U7| returns to take the maximal value for the first time. The values of
t, in TableI agree with those evaluated by Abe and Satofuka [7] within the
accuracy of 5 percent. From Fig. 9 we are required to apply the Runge-Kutta
smoother more frequently as the amplitude increases. The cpu time required for
smoothing by the Runge-Kutta smoother was 3.6 ms per smoothing which was
about four times as large as that by the second-order smoother in which we used
the leapfrog scheme twice to obtain u}*"' and u} ~* from «} and u7~"'. However, the
cpu time for smoothing forms a negligible percentage of the total running time.
The K-dV equation has conservation laws

r2
C, EJO ulx, 1) dx=0

.2 2
J [—u —;1(2 > :Id‘c-f-u(nA)'—O

as well as C,. The values of |C,|, |C,|, and |C;| at the near-recurrence times are
given in Table II, where the Runge—Kutta smoother is applied at the end of every
smoothing period. We see that the Runge-Kutta smoother enables us to make
long-time leapfrog integration of the K-dV equation for large amplitudes as well as
small amplitudes.
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