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The Runge-Kutta smoother is applied to suppress nonlinear numerical instabilities in the 
leapfrog scheme for time integration of the Korteweg-de Vries equation. The accuracy or 
in;:cgration is compared with that by the use of the second order smoother. The Range-Kuttr. 
smoother enables us to make long-time integration of the Korteweg-de Vries equation Ear 
large amplitudes. Cm 1991 Academic press. inc. 

1. INTRODUCTIO~~ 

The leapfrog scheme has extensively been used for time integration of noniinear 
partial differential equations of hyperbolic type. The scheme has the merit of being 
simple and free from dissipation errors. However, when we use the Ieapfrog scheme 
to integrate equations including no dissipative term, such as the nonlinear convec- 
tive equation or the Korteweg-de Vries (K-dV) equation, the scheme often suffers 
irom some numerical instabilities [l-4]. 

In the previous paper [4]: we studied the nonlinear numerical instability in the 
leapfrog scheme applied to the K-dV equation. It was shown that t!ie instability 
comes from parametric excitation of computational modes of wave. En order to 
carry out long-time integration of the K-dV equation, the previous paper proposed 
the Runge-Kutta smoother to suppress the instability. 

This paper shows experimentally that the Runge-Kutta smoother combined with 
the leapfrog scheme by Zabusky and Kruskai [S] enables us to make iong-time 
antegration of the K-dV equation for large amplitudes. 
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2. OBSERVATION OF NUMERICAL INSTABILITY 

We consider the K-dV equation as in [4]: 

au al4 a3u 
Yg+uF+p-=o, Y 8X3 (1) 

where ~1 is constant. We solve Eq. (1) under the periodic boundary condition 

u(x, t) = u(x + 2, t) (2) 

and the initial condition 

u(x, 0) = A cos(lrx), (3) 

where A is the amplitude. We adopt the leapfrog scheme by Zabusky and Kruskal 
Cjl: 

q+‘=qI 

(4) 

where I$’ = u(x = j Ax, t = n At), Ax is the spatial increment, and At is the temporal 
increment. The periodic boundary condition (2) becomes 

II 
“:=“w’ 

where 2JAx= 2, and the initial condition (3) becomes 

u; = A cos( 7cj Ax). 
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FIG. 1. Invariants lCzl as functions of time step n or time f for A = 0.5. 1.0, 2.5, and 5.0; /l= 
dx=2,‘400; ~Af=2.5x lo-” in Eq. (4). 
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TABLE I 

Blowup and Near-Recurrence Times 

Amplitude -4 5.0 2.5 l.@ 0.5 

Biowup time (nr,) 1.90 5.88 25.3 75.1 

Near-recurrence time (XI,) 13.8 19.3 30.3 43.5 

We make the numerical integrations based on scheme (4) fixing ;J =0.X2’. 
Ax= 2,400, and n At= 2.5 x fOm~’ for A =OS, I.@ 2.5, and 5.0. The temporal 
increment given above satisfies the linear stability condition (9) given later. The 
accuracy of integrations is checked by observing the conservation law of the K-$4 
equation (1): 

Ail of the computations are made by using numbers of 16 figures {doub!e 
precision )~ 

Figure 1 gives the values of lCzl as functions of time step iz or time t. We see from 
the figure that after some time step lC21 exponentially grows without bound. The 
growth rate becomes larger with the amplitude A. We define the blowup time r!, at 
which /C21 exceeds A”. The numerical solution obtained by the leapfrog scheme 14) 
for I > t, has no meaning. Table I gives the blowup time t, and the near-recurrence 
time t, whose definition will be given later. 

Figure 2 gives the magnified curve of C, in Fig. 1 for A = 1.0 and 
PI = 59,900 z 60,100. The value of C2 changes its sign at each time step. 
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FIG. 2. Saw-toothed oscillation of C2 corresponding to Fig. i for .4 = 1.0, and i! = 59,900 z 60,102 
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3. PHYSICAL AND COMPUTATIONAL MODES 

In order to explain the saw-toothed oscillation of C,, let us start from the linear 
stability analysis of scheme (4). For rough estimation of the linear stability we 
replace (u;+ r + uJ* + u,“~ i j/3 in the second term of the right-hand side of Eq. (4) by 
a constant c and expand z$ in terms of the discrete Fourier coefficients Vi: 

u; = 
k= -J 

Thus we obtain from the linear version of scheme (4) 

u;+’ - 2i At ok. - 2 sin(nk Ax) 
I 

LIE - UE- ’ = 0, 

where 

2ru cok = - sin( rk Ax)[ 1 - cos( nk AX)]. 
( Ax)~ 

The solution of Eq. (7) has the form of Uiccexp(in6,), where 

sin 8, = At ok - 2 sin(7ck Ax) . 1 

(6) 

(7) 

(8) 

The condition that ok is real or jsin ekl < 1 leads to the linear stability condition for 
scheme (4). The condition lsin @,I d 1 is satisfied if 

maxIok/ + max k sin(7ck Ax) <1 

or 

(9) 

Inequality (9) is the severe stability condition for At. When inequality (9) is 
satisfied, Eq. (8) has two solutions of ek. If we write one of them as Ok, the other 
is 7c - ok. Then the solution of Eq. (7) is written as 

u;= V,exp(idk)+ wkexp[in(n-ekj] 

= V, exp (id,) + ( - 1 )‘z W, exp( - inel,), (lo) 

where the coefficients Vk and lVk are constants independent of n. By substituting 
Eq. (10) into Eq. (6), we can express UT as 

Uj”=u~;+(-l)“,2$ (11) 
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where 

Vz = b;I exp(QztI,), W; = Wk expj - inQ,j. 

We call cJ’ as physical modes and (- l)R$’ as computational modes. W 
approaches zero, physical modes converge to the physical solution and computa.~ 
lional modes vanish. Note that computational modes change their signs at each 
time step il. 

In view of the linear solution (1 l), we may decompose also solutions U; of the 
nonlinear equation (4) into the physical modes UT and the computational modes 
( - 1 ,y as in Eq. (11). The saw-toothed oscillation in Fig. 2 comes from the 
computational modes ( - 1 j%: in Eq. (11). 

4. RUNGE-KUTTA SMOOTHER 

The simplest way [6] to exclude the computational modes is to evaiutate 
wyi “+221,;+~,“-~ from Eq. (11) as 

Lli’ + i + 2uJ’ + u,” - 1 = Ll; + 1 + 2q + q ~ ’ - ( -- 1 )‘y\y + 1 - .&y,” + \q ~ 1) / 

and approximate t;J + ’ + 20.7 + ~1;: ~ ' ZE 4~7; and IV: + ’ - 2$ + ~3; ~ ! 1: 0. Then we 

obtain 
0; = ,,,;+I -I- 2u; + r4; - i )$I. ;, i2) 

eplacing n by YE - 1 in the above equation, we obtain 
t,; -~ 1 = (21,; + y - : + q ~ 2 i/4. 

We can restart the leapfrog integration based on Eq. (4) using 0,:’ and tY1 in place 
of U; and $’ ~~ ’ at some time step. This replacement operation, however,‘violates the 
conversation law of Cz. We call the smoother (12) as the second-order smoother. 

A more accurate way to exclude the computational modes is to apply the 
following Runge-Kutta smoother. By replacing tz in Eq. ( 11) by I: - 1, we obtain 

u;-’ =$-I - (- 1,y- L, ;!3, 

In order to obtain cr, $‘, cy-‘, and IV’~ ~ ’ from u’! and u” - ’ . we need two more 
equations as well as Eqs. ( 11) and ( 13< For this &pose: we use the differential 
equation recovered from Eq. (4): 

-‘_(ujfr2u,+, +2tlj-,-ri~j+,), 
2(As)’ 
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where zri(t) are regarded as functions of continuous time t. We integrate Eq. (14) 
using the Runge-Kutta scheme to obtain uj(t = n dt) from u,;.*+ ’ which are the leap- 
frog solutions of Eq. (4). The step-size used in the Runge-Kutta scheme is At, same 
as in the leapfrog scheme. Since the Runge-Kutta scheme is free from the saw- 
toothed oscillation, all of UT--’ in Eq. (13) are advanced in time with no such 
oscillations as the computational modes. Therefore uj(t = n AZ) integrated from 
up may be expressed as 

zr,(t=ndt)=L7;-(-1)“q. (15) 

We have ignored the errors incurred by the use of the Runge-Kutta scheme instead 
of the leapfrog scheme. The validity of Eq. (15) will be ascertained experimentally. 
Then from Eqs. (11) and (15), we obtain 

v; = [z47 + z4,Jt = n At)]/2, 

(-l)‘%;= [u;-uj(t=nAt)]/2. 

Thus we can decompose uJ.’ into the physical modes VT and the computational 
modes ( - l)%~. In a quite similar manner, we make time-reversing Runge-Kutta 
integration of Eq. (14) to obtain uj(t= (n- 1) dt) from ~7, As in the case of 
Eq. (15), ui(t= (IZ - 1) At) obtained thus may be expressed as 

q(t=(n-l)At)=vi”-‘+(-l)“w:‘? 

Equation (13) and the last equation give 

vi --l= [ui”-‘+u,(t=(c 1) At)]/2, 

(-l)n-l$-‘= [u;?-u,(t=(n- 1) At)]/2. 

The schematic graph for the Runge-Kutta smoother is given in Fig. 3. 
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FIG. 3. Schematic graph for the Runge-Kutta smoother: u;, u;-‘, leapfrog solutions; uj(f = n At), 
u,(f= (n - 1) Al), Runge-Kutta solutions. 
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5. EFFECTS OF SMOOTHING 

We substitute Eq. (11) into the right-hand side of Eq. (5) to obtain 

CT = czp + Clcr 

where 

j=O 

The C,, denotes the error of physical modes and Czc comes from computational 
modes. Since in earlier time stage I$’ 1 << jt’J.‘j, the last equation becomes 

Thus Clr changes its sign at each time step iz. Figure 4 gives (C2gl and /Czc/ 
obtained thus for A = 1.0. The Clc in Fig. 4 changes its sign at each time step as 
shown in Fig. 2. Note that the saw-toothed oscillation of C,, does not appear in 
ICY,,\. Also is noted in Fig. 1 that the saw-toothed oscillation of Cz. does not appear 
in /C,\ when /C,,/ $ ICY,,\. The saw-toothed oscillation of lC,( appears only w 
lC,,.I 2 IG,l. 

Now we apply the smoother to scheme (4); that is to say. we replace U; and I$- i 
by the physical modes $’ and $‘- ‘> respectively, at some time step. Figures 5 and 
6 give Ci, and Czc for A = 1.0 when the second-order smoother is applied at the 
time step II = 60,000. We see from the figures that the second-order smoother can- 
no: exclude the computational modes completely, and the remaining computational 
modes grow rapidly to blow up the integration. Figures 7 and .8 give CZp and C,, 
for A = 1.0 when the Runge-Kutta smoother is applied at the time step tr = 60,000. 
The Runge-Kutta smoother can exclude the computational modes almost com- 

etely and enables us to make the long-time leapfrog integration if we apply the 
e-Kutta smoother periodically. 

e also applied the second-order and Runge-Kutta smoothers to integrations 
for k = 0.5, 2.5, and 5.0 and found that the second-order smoother cannot exclude 
the computational modes completely, while the Runge-Kutta smoother can exclude 
them almost completely. This fact may assure the validity of Eqs. (11) and i 15) 
even for ;4 = 2.5 and 5.0. 

Figure 9 gives !CzPl at the near-recurrence time t, as a function of the smoothing 
period. The Runge-Kutta smoother is applied at the end of each smoothing period. 
We evaluate the fundamental Fourier coefficient in Eq. (6) from the leapfrog 
solutions UT. The near-recurrence time rr, as been given in Table I, is the 
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FIG. 4. (C,,J and IC,,I as functions of time step n for A = 1.0 in Fig. 1. Note that C, is not the 
physical part of the constant but the error of the constant, C2 = Czp + Clr. 
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FIG. 5. Time developments of IC+I and ICzcj for A = 1.0 when the second-order smoother is applied 
at the time step n = 60,000. 
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FIG. 6. Magnified curves of C,, and Czc at the smoothing time step n = 60,000 in Fig. 5. 
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FIG. 7. Time developments of /C,,I and ICI<1 for A = 1.0 when Zhe Runge-Kutta smcothe: is 
applied at the time step )I = 60,000. 
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FIG. 8. hlagnikd curves of C:, and C,, at the smoothing time step II = 60,ooO in Fig, I 
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FIG. 9. /CZ,I at the near-recurrence time I, as a function of smoothing period for .J =O.S. 1.0. 2.5, 
and 5.0. The smoothing period is normalized by the near-recurrence time r,. 
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TABLE II 

Values of (C,I, (C,I, and (C1l at Near-Recurrence Time 1, by Using Runge-Kutta 
Smoother 

Amplitude A 5.0 2.5 1.0 0.5 

smoothing 
period/t, 
(step n) 

lC,l 

IC,l 

lC,l 

0.0453 0.0648 0.331 0.471 
(2,500) (5,000) (40,000) (WOO) 

1.55 x lo-l2 1.98 x 10-l’ 1.32 x lo-l2 9.32 x lo-l1 

3.60 x lo-’ 7.06 x 1O-6 4.05 x 10 -* 7.62 x lo-” 

3.27 x lo-” 7.12 x 1om3 5.41 x 10 ms 3.25 x 1O-6 

time when 1 U;ll returns to take the maximal value for the first time. The values of 
t, in Table I agree with those evaluated by Abe and Satofuka [7] within the 
accuracy of 5 percent. From Fig. 9 we are required to apply the Runge-Kutta 
smoother more frequently as the amplitude increases. The cpu time required for 
smoothing by the Runge-Kutta smoother was 3.6 ms per smoothing which was 
about four times as large as that by the second-order smoother in which we used 
the leapfrog scheme twice to obtain .:+I and u’.~’ from UT and UT-‘. However, the 
cpu time for smoothing forms a negligible percintage of the total running time. 

The K-dV equation has conservation laws 

as well as C,. The values of IC1j, IC,I, and IC31 at the near-recurrence times are 
given in Table II, where the Runge-Kutta smoother is applied at the end of every 
smoothing period. We see that the Runge-Kutta smoother enables us to make 
long-time leapfrog integration of the K-dV equation for large amplitudes as well as 
small amplitudes. 
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